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The Capacity of Channels With Feedback
Sekhar Tatikonda, Member, IEEE, and Sanjoy Mitter, Life Fellow, IEEE

Abstract—In this paper, we introduce a general framework for
treating channels with memory and feedback. First, we prove
a general feedback channel coding theorem based on Massey’s
concept of directed information. Second, we present coding results
for Markov channels. This requires determining appropriate
sufficient statistics at the encoder and decoder. We give a re-
cursive characterization of these sufficient statistics. Third, a
dynamic programming framework for computing the capacity of
Markov channels is presented. Fourth, it is shown that the average
cost optimality equation (ACOE) can be viewed as an implicit
single-letter characterization of the capacity. Fifth, scenarios with
simple sufficient statistics are described. Sixth, error exponents
for channels with feedback are presented.

Index Terms—Capacity, directed information, dynamic pro-
gramming, feedback, Markov channels, sufficient statistics.

I. INTRODUCTION

T HIS paper presents a general framework for proving
coding theorems for channels with memory and feedback.

Because of increased demand for wireless communication and
networked systems there is a renewed interest in this problem.
Feedback can increase the capacity of a noisy channel, decrease
the complexity of the encoder and decoder, and reduce latency.

Recently, Verdú and Han presented a very general formu-
lation of the channel coding problem without feedback [34].
Specifically, they provided a coding theorem for finite-alphabet
channels with arbitrary memory. They worked directly with the
information density and provided a Feinstein-like lemma for the
converse result. Here we generalize that formulation to the case
of channels with feedback. In this case, we require the use of
code functions as opposed to codewords. A code function maps
a message and the channel feedback information into a channel
input symbol. Shannon introduced the use of code functions,
which he called strategies, in his work on transmitter side infor-
mation [28]. Code functions are also sometimes called codetrees
[21].

We convert the channel coding problem with feedback into
a new channel coding problem without feedback. The channel
inputs in this new channel are code functions. Unfortunately,
the space of code functions can be quite complicated to work
with. We show that we can work directly with the original space
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of channel inputs by making explicit the relationship between
code-function distributions and channel input distributions. This
relationship allows us to convert a mutual information optimiza-
tion problem over code-function distributions into a directed
information optimization problem over channel input distribu-
tions.

Directed information was introduced by Massey [23] who at-
tributes it to Marko [22]. Directed information can be viewed
as a causal version of mutual information. Kramer [20], [21]
used directed information to prove capacity theorems for gen-
eral discrete memoryless networks. These networks include the
memoryless two-way channel and the memoryless multiple-ac-
cess channel. In this paper, we examine single-user channels
with memory and feedback. One of the main difficulties in this
problem has to do with the fact that the transmitter and the
receiver may have different information about the state of the
channel. We show how to choose appropriate sufficient statis-
tics at both the transmitter and the receiver.

The problem of optimal channel coding goes back to the orig-
inal work of Shannon [26]. The channel coding problem with
feedback goes back to early work by Shannon, Dobrushin, Wol-
fowitz, and others [27], [12], [38]. In particular, Shannon in-
troduced the feedback problem. Both Shannon and Dobrushin
examined the case of memoryless channels with feedback. Wol-
fowitz, in his book, describes a variety of finite-state channels
with state calculable by the sender or the receiver. We generalize
these results to general Markov channels with output feedback.
We do not assume that the state is known to either the transmitter
or the receiver.

There is a long history of work regarding Markov channels
and feedback. Here we describe a few connections to that lit-
erature. Mushkin and Bar-David [24] determined the capacity
of the Gilbert-Elliot channel without feedback. Blackwell,
Breiman, and Thomasian [4] examine finite-state indecompos-
able channels without feedback. Goldsmith and Varaiya [16]
examine nonintersymbol interference (ISI) Markov channels
without feedback. For the case of independent and identically
distributed (i.i.d.) inputs and symmetric channels, they intro-
duce sufficient statistics that lead to a single-letter formula. In
this paper, we identify the appropriate statistics when feedback
is available. In a certain sense, to be explained in this paper,
the Markov channel with feedback problem is easier than the
Markov channel without feedback problem. This is because in
the full channel output feedback case the decoder’s information
pattern is nested in the encoder’s information pattern [36]. In
this paper, we do not treat noisy feedback.

Viswanathan [35], Caire and Shamai [6], and Das and
Narayan [10] all examine different classes of channels with
memory and side information at the transmitter and the receiver.
Chen and Berger [7] examine Markov channels when the state
is known to both the transmitter and the receiver. In this paper,
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Fig. 1. Interconnection.

we present a general framework for treating Markov channels
with ISI and feedback.

Many authors consider conditions that ensure the Markov
channel is information stable [25]. For example, Cover and
Pombra [8] show that Gaussian channels with feedback are
always information stable. Shannon [29] introduced the notion
of “recoverable state property” by which a channel can be reset
to a known state by using a fixed finite sequence of channel
inputs. In addition, some authors consider conditions that
ensure the Markov channel is indecomposable [15], [4]. In
our work, it is shown that solutions to the associated average
cost optimality equation (ACOE) imply information stability.
In addition, the sufficient condition provided here for the
existence of a solution to the ACOE implies a strong mixing
property of the underlying Markov channel in the same way
that indecomposability does. The ACOE can be viewed as an
implicit single-letter characterization of the channel capacity.

We consider Markov channels with finite-state, channel input,
and channel output alphabets. But with the introduction of ap-
propriate sufficient statistics, we quickly find ourselves working
with Markov channels over general alphabets and states. As
shown by Csiszár [9], for example, treating general alphabets
involve many technical issues that do not arise in the finite-al-
phabet case.

Tatikonda first introduced the dynamic programming ap-
proach to the directed information optimization problem [31].
Yang, Kavcic, and Tatikonda have examined the case of fi-
nite-state machine Markov channels [39]. Here we present a
stochastic control framework that treats many Markov channels
including finite-state machine Markov channels.

In general, it is difficult to solve the ACOE. This is because
the sufficient statistics can be quite complicated. Hence, it will
be difficult to get an explicit formula for the feedback channel
capacity. There are, though, many scenarios when the sufficient
statistics become much simpler and hence the ACOE becomes
simpler. We discuss these scenarios in Section VIII. In these
cases, one can apply exact or approximate dynamic program-
ming techniques to solve the ACOE.

In summary, the main contributions of this paper are as fol-
lows. 1) We prove a general feedback channel coding theorem
based on Massey’s concept of directed information [23]. 2) We
present coding results for Markov channels. This requires de-
termining appropriate sufficient statistics at the encoder and de-
coder. We give a recursive characterization of these sufficient
statistics. 3) A dynamic programming framework for computing

the capacity of Markov channels is presented. 4) It is shown that
the ACOE can be viewed as an implicit single-letter character-
ization of the capacity. 5) Scenarios with simple sufficient sta-
tistics are described. 6) Error exponents for channels with feed-
back are presented. Preliminary versions of this work have ap-
peared in [31]–[33].

II. FEEDBACK AND CAUSALITY

Here we discuss some of the subtleties (some more so than
others) of feedback and causality inherent in the feedback ca-
pacity problem. We give a high-level discussion here and give
specific definitions in the next section. The channel at time
is modeled as a stochastic kernel , where

and . See Fig. 1. The channel output is fed
back to the encoder with delay one. At time , the encoder takes
the message and the past channel output symbols
and produces a channel input symbol . At time , the decoder
takes all the channel output symbols and produces
the decoded message. Hence, the time ordering of the variables
is

message decoded message
(1)

When there is no feedback, under suitable conditions,
characterizes the maximum number of

messages one can send with small probability of decoding
error. Our goal in this paper is to generalize this to the case of
feedback. To that end, we now mention some subtleties that
will guide our approach. See also Massey [23] and Marko [22].

One should not supremize the mutual information
over the stochastic kernel . We can factor

. This states that, at
time , the channel input symbol depends on the future
channel output symbols . This violates the causality implicit
in our encoder description. In fact, is the poste-
rior probability used by the decoder to decode the message
at time . Instead, as we will show, one should supremize
the mutual information over the directed stochastic kernel:

. See Definition 4.1.
One should not use the stochastic kernel as a

model of the channel when there is feedback. To compute the
mutual information, we need to work with the joint measure

. In general, it is not possible to find a joint mea-
sure consistent with the stochastic kernels: and

. Instead, as we will show, the appropriate model for
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the channel when there is feedback is a sequence of stochastic
kernels: . See Section III.

One should not use the mutual information
when there is feedback. When there is feedback the conditional
probabilities almost
surely under . Even though occurs after ,
it still has a probabilistic influence on it. This is because under
feedback is influenced by the past channel output . To
quote Massey [23], “statistical dependence, unlike causality,
has no inherent directivity.” The mutual information factors
as . The information
transmitted to the receiver at time , given by ,
depends on the future . Instead, as we will show, we should
use the directed information: . See Definition 4.2.

III. CHANNELS WITH FEEDBACK

In this section, we formulate the feedback channel coding
problem. We first introduce some notation. Let rep-
resent a stochastic kernel from the measurable spaces to .
See the Appendix for definitions and properties of stochastic
kernels.

Given a joint measure , we use
(or just ) to represent the conditional probability (when
it exists.) In general, lower case letters will be used
for stochastic kernels and upper case letter will be
used for joint measures or conditional probabilities. Let
represent the space of all probability measures on endowed
with the topology of weak convergence.

Capital letters will represent random
variables and lower case letters will represent
particular realizations. For the stochastic kernel ,
we have being a number. Given a joint measure

, we have being a
random variable taking value with probability

being a random variable taking value with
probability , and being a random mea-
sure-valued element taking value with probability

. Finally, let the notation denote that the
random elements form a Markov chain.

We are now ready to formulate the feedback channel coding
problem. Let be random elements in the finite1 set
with the power set -algebra. These represent the channel in-
puts. Similarly, let be random elements in the finite set

with the power set -algebra. These represent the channel out-
puts. Let and represent the -fold product spaces with
the product -algebras (where may be infinity). We use “ ”
to represent logarithm base .

A channel is a family of stochastic kernels
. These channels are nonanticipa-

tive with respect to the time-ordering (1) because the
conditioning includes only .

We now define a code function. This is an extension of the
usual concept of codeword. Let be the set of all measurable
maps taking . Endow with the

1The methods in this paper can be generalized to channels with abstract al-
phabets.

power set -algebra. Let denote the Carte-
sian product endowed with the product -algebra. Note that
since and are finite, the space is at most countable. A
channel code function is an element .
A distribution on is given by a specification of a sequence
of code-function stochastic kernels . Specifi-
cally, . We will use the notation

.
A message set is a set . Let the distribu-

tion on the message set be the uniform distribution. A
channel code is a list of channel code functions denoted by

. For message at time with channel feedback
, the channel encoder outputs . A channel code

without feedback is a list of channel codewords denoted by
. For message at time , the channel encoder

outputs independent of the past channel outputs .
A channel decoder is a map taking .

The decoder waits till it observes all the channel outputs before
reconstructing the input message. The order of events is shown
in Fig. 1.

Definition 3.1: A channel code over time horizon
consists of code functions, a channel decoder , and an

error probability satisfying .
A channel code without feedback is defined similarly
with the restriction that we use codewords.

In the following, the superscripts “o” and “nfb” represent the
words “operational” and “no feedback.” Following [34], we de-
fine the following.

Definition 3.2: is an -achievable rate if, for all ,
there exists, for all sufficiently large channel codes
with rate . The maximum -achievable rate is
called the -capacity and denoted . The operational channel
capacity is defined as the maximal rate that is -achievable for
all and is denoted . Analogous definitions for

and hold in the case of no feedback.

Before continuing we quickly remark on some other formu-
lations in the literature. Some authors work with different sets
of channels for each blocklength . See, for example, [13] and
[34]. In our context, this would correspond to a different se-
quence of channels for each : . The-
orem 5.1 will continue to hold if we use channels of this form.
It is hard, though, to imagine a context with feedback where
nature will provide a different set of channels depending on
the time horizon. Hence, the formulation in this paper is nat-
ural when feedback is available and opens the way to treating
Markov channels.

Note that in Definition 3.2 we are seeking a single number
that is an achievable capacity for all sufficiently large .

Some authors instead, see [8], for example, seek a sequence
of numbers such that there exists a sequence of channel
codes with . It will turn out that for
the time-invariant Markov channels described in Section VI the
notion of capacity described in Definition 3.2 is the appropriate
one. We will further elaborate on this point in Section IV-A after
we have reviewed the concept of information stability.
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A. Interconnection of Code Functions to the Channel

Now we are ready to interconnect the pieces: channel,
channel code, and decoder. We follow Dobrushin’s program
and define a joint measure over the variables of interest that is
consistent with the different components [13]. We will define a
new channel without feedback that connects the code functions
to the channel outputs. Corollary 3.1 shows that we can connect
the messages directly to the channel output symbols.

Let be a sequence of code-func-
tion stochastic kernels with joint measure

on . For example, may be a dis-
tribution that places mass on each of different code
functions. Given a sequence of code-function stochastic kernels

and a channel , we
want to construct a new channel that interconnects the random
variables to the random variables . We use “ ” to
denote the new joint measure that we will
construct. The following three reasonable properties should
hold for our new channel.

Definition 3.3: A measure is said to
be consistent with the code-function stochastic kernels

and the channel
if for each , the following hold.

i) There is no feedback to the code functions in the new
channel: The measure on is chosen at time . Thus,
it cannot causally depend on the ’s and ’s. Thus, for
each and all , we have

for almost all .
ii) The channel input is a function of the past outputs: For

each . In other words, for each
and all , we have

for almost all . Here is the Dirac mea-
sure: if and else.

iii) The new channel preserves the properties of the under-
lying channel: For each , and all , we have

for almost all .

Note that in ii) we have assumed that the channel input is a
function of the past outputs. One could consider more general
stochastic encoders (as is often done for compound channels.) In
our case, the channel is assumed to be known to the transmitter
and the receiver.

The next lemma shows that there exists a unique consistent
measure and provides the channel from to .

Lemma 3.1: Given a sequence of code-function stochastic
kernels and a channel ,
there exists a unique consistent measure on

. Furthermore, the channel from to for
each and all is given by

(2)

for almost all .

Proof: Let
. For finite , this measure

exists (see the Appendix). By the Ionescu–Tulcea theorem, this
measure exists for the case. Clearly, this is consistent
and by construction it is unique.

For each , the joint measure can be decomposed as

Thus, we have shown (2).

Hence, for any sequence of code-function stochastic kernels
, the stochastic kernel

can be chosen as a version of the regular conditional distribution
. Thus, the stochastic kernels

can be viewed as the channel from
to . Note that the dependence is on and not

. We will see in Section V that this observation will greatly
simplify computation.

The almost sure qualifier in (2) comes from the fact that
may equal zero for some . This can happen,

for example, if either has zero probability of appearing under
or has zero probability of appearing under the

channel .
A distribution on induces a measure on .

Corollary 3.1: A distribution on , a channel code
, and the channel uniquely

define a measure on . Further-
more, the channel from to for each and all is given
for almost all by

IV. DIRECTED INFORMATION

As discussed in Section II, the traditional mutual information
is insufficient for dealing with channels with feedback. Here we
generalize Massey’s [23] and Marko’s [22] notion of directed
information to take into account any time ordering of the random
variables of interest. But first we generalize Kramer’s [20] no-
tion of causal conditioning to arbitrary time orderings.

Definition 4.1: We are given a sequence of stochastic kernels
. Let where

. Let . Let
. Define similarly. Then, the directed

stochastic kernel of with respect to is
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For each , the directed stochastic kernel
is a well-defined measure (see the Appendix). For example

for all bounded functions measurable with respect to the
product -algebra on . Note that this integral is a measur-
able function of .

One needs to be careful when computing the marginals of
a directed stochastic kernel. For example, if given

, and with the resulting joint measure
, then with the obvious time ordering

for almost all unless forms a Markov
chain under . Here represents the conditional prob-
ability under .

Definition 4.2: Given a sequence of stochastic kernels
and , the directed informa-

tion is defined as

(3)

where is the divergence,
, and

[here
is the marginal of ].

Note that this definition is more general than the one given
by Massey [23]. We can recover Massey’s definition of directed
information by applying Definition 4.2 to and

with the time ordering given in (1):
. Unlike the chain rule for mutual in-

formation, the superscript on in the summation is “ ” and not
“ .” From Definition 4.2, one can easily show

where the stochastic kernel is a version of
the conditional distribution . The second equality
shows that the directed information is the ratio between the pos-
terior distribution and a “causal” prior distribution.

Note that
. By Definition 4.2 and

time ordering (1), we have
. Now if and only

if for each the following forms a Markov
chain under . This Markov chain can be interpreted as there

being no “information” flowing from the receiver to the trans-
mitter. Because divergence is nonnegative, we can conclude
that with equality if and only if
there is no feedback [23], [20].

A. Information Density, Directed Information, and Capacity

When computing the capacity of a channel it will turn out that
we will need to know the convergence properties of the random

variables . This is the normalized in-

formation density discussed in [34] suitably generalized to treat
feedback. If there are reasonable regularity properties, like in-
formation stability (see below), then these random variables will
converge in probability to a deterministic limit. In the absence
of any such structure, we are forced to follow Verdú and Han’s
lead and define the following “floor” and “ceiling” limits [34].

The limsup in probability of a sequence of random variables
is defined as the smallest extended real number such that

. The liminf in probability
of a sequence of random variables is defined as the largest
extended real number such that

.

Let . For a sequence of

joint measures , let

and

Lemma 4.1: For any sequence of joint measures
, the following holds:

.
Proof: See the Appendix.

We extend Pinsker’s [25] notion of information stability. A
given sequence of joint measures is directed

information stable if
. The following lemma shows that directed information

stability implies and concentrates around its mean
. This mean needs not necessarily converge.

Lemma 4.2: If the sequence of joint measures
is directed information stable, then

.
Proof: Directed information stability implies for all

Because is finite, we know , hence
for all

This observation along with Lemma 4.1 proves the lemma.
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To compute the different “information” measures, we need
to determine the joint measure . This can be
done if we are given a channel and we
specify a sequence of kernels .

Definition 4.3: A channel input distribution is a sequence
of kernels . A channel input dis-
tribution without feedback is a channel input distribu-
tion with the further condition that for each the kernel

is independent of . (Specifically,
.)

Let be the set of all
channel input distributions. Let be the set of
channel input distributions without feedback. We now define
the directed information optimization problems. Fix a channel

. For finite , let

and

For the infinite horizon case, let

(4)

and

Verdú and Han proved the following theorem for the case
without feedback [34].

Theorem 4.1: For channels without feedback,
.

In a certain sense, we already have the solution to the coding
problem for channels with feedback. Specifically, Lemma 3.1
tells us that the feedback channel problem is equivalent to a new
channel coding problem without feedback. This new channel is
from to and has channel kernels defined by (2). Thus,
we can directly apply Theorem 4.1 to this new channel.

This can be a very complicated problem to solve. We would
have to optimize the mutual information over distributions on
code functions. The directed information optimization problem
can often be simpler. One reason is that we can work directly
on the original space and not on the space.
The second half of this paper describes a stochastic control ap-
proach to solving this optimization. In the next section, though,
we present the feedback coding theorem.

V. CODING THEOREM FOR CHANNELS WITH FEEDBACK

In this section, we prove the following theorem.

Theorem 5.1: For channels with feedback, .

We first give a high-level summary of the issues involved.
The converse part is straightforward. For any channel code
and channel, we know by Lemma 3.1 that there exists a
unique consistent measure . From this

measure, we can compute the induced channel input distri-
bution . (These stochastic kernels are
a version of the appropriate conditional probabilities.) Now

but it needs not be the suprem-
izing channel input distribution. Thus, the directed information
under the induced channel input distribution may be less than
the directed information under the supremizing channel input
distribution. This is how we will show .

The direct part is the interesting part of the Theorem
5.1. Here, we take the optimizing channel input distribu-
tion and construct a sequence of
code-function stochastic kernels . We then
prove the direct part of the coding theorem for the channel
from to by the usual techniques for channels without
feedback. By a suitable construction of , it can be shown
that the induced channel input distribution equals the original
channel input distribution.

A. Main Technical Lemmas

We first discuss the channel input distribution in-
duced by a given code-function distribution. Define the
graph .
Let and

.
In Lemma 3.1, we showed that the channel from to

depends only on the channel from to . Hence, for
each and all , we have

where the first
equality holds almost all and the second equality
holds .

We now show that the induced channel input distribution only
depends on the sequence of code-function stochastic kernels

.

Lemma 5.1: We are given a sequence of code-func-
tion stochastic kernels , a channel

, and a consistent joint measure
. Then, the induced channel input distri-

bution, for each and all , is given by

(5)
for almost all . Here

.
Proof: Note that

. Thus, implies
. Hence, the right-hand side of (5)

exists -almost surely. Now for each and such
that , we have
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where (a) follows because does not depend on
and the delta functions restrict the sum

over . Line (b) follows because and
hence the conditional probability exists.

The almost sure qualifier in (5) comes from the fact that
may equal zero for some . This can

happen, for example, if puts zero mass on those
that produce from or if has zero probability of
appearing under the channel .

We now show the equivalence of the directed information
measures for both the “ ” and the “ ” channels.

Lemma 5.2: For each finite and every consistent joint mea-
sure , we have

(6)

hence . Furthermore, if given a
sequence of consistent measures , then

.
Proof: Fix finite. Then, for every such that

, we have

where (a) follows because the marginal
and for Lemma 5.1 shows

.
Furthermore, if given a sequence of consistent measures

, (6) states that for each the random
variables on the left-hand side and right-hand side are almost
surely equal. Hence, .

We have shown how a code-function distribution induces
a channel input distribution. As we discussed in the intro-
duction to this section, we would like to choose a channel
input distribution , and construct a se-
quence of code-function stochastic kernels ,
such that the resulting induced channel input distribution

equals the chosen channel input dis-
tribution. This is shown pictorially

The first arrow represents the construction of the code-func-
tion distribution from the chosen channel input distribution. The
second arrow is described by the result in Lemma 5.1. Lemma
5.2 states that . Let
correspond to the joint measure determined by the left channel
input distribution in the diagram and the channel. If we can
find conditions such that the induced channel input distribution

equals the chosen channel input distribu-
tion then .
Consequently, .

Definition 5.1: We call a sequence of code-function sto-
chastic kernels , with resulting joint measure

, good with respect to the channel input distribution
if for each and all , we have

Lemma 5.4 shows that good code-function distributions exist.
But first, we show the equivalence of the chosen and induced
channel input distributions when a good code-function distribu-
tion is used.

Lemma 5.3: We are given a sequence of code-func-
tion stochastic kernels , a channel

, and a consistent joint measure
. We are also given a channel input dis-

tribution . The induced channel input
distribution satisfies for each and all

(7)

for almost all if and only if the sequence of code-
function stochastic kernels is good with re-
spect to .

Proof: First, assume that is good with re-
spect to . Then, for each and all

where each equality holds almost all . Line (a)
follows from Lemma 5.1. Now assume that (7) holds. Then,

and , we have
almost all ,

where the first equality follows from Lemma 5.1.
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Lemma 5.4: For any channel input distribution
, there exists a sequence of code-func-

tions stochastic kernels that are good with respect to it.
Proof: For all , define as follows:

(8)

We first show that defined in (8) is a stochastic
kernel. Note that for each and all , we have

where (a) follows because the sum is over all functions
. The sum over can be viewed as a -fold

summation over the alphabet one for each element in the
domain of . Thus, the sum of products can be written as a
product of sums.

We now show by induction that for each and all , we
have . For and (8), we
have . For ,
we have

where (a) follows because . Line (b)
follows from an argument similar to that given above. Specif-
ically, the sum over can be viewed as
a -fold summation over the alphabet (the comes
from removing the term). Line (c) follows from the induction
hypothesis.

In the above construction (8), we have enforced independence
across the different . Specifically, for , we have

We do not need to assume this independence in order to find a
sequence of code-function stochastic kernels good with respect
to a given channel input distribution. For example, it is known
that Gaussian (linear) channel input distributions are optimal
for Gaussian channels. For more details, see [8], [31], and [40].
When dealing with more complicated alphabets, one may want
the functions to be continuous with respect to the topologies
of and . Continuity is trivially satisfied in the finite-alphabet
case. See [39] for an example of a finite-alphabet, finite-state
Markov channel.

Note that it is possible for distinct code-function stochastic
kernels to induce the same channel input distribution (almost
surely.) Similarly, there may be many code-functions stochastic
kernels that are good with respect to a given channel input dis-
tribution (and hence, via Lemma 5.3, induce the same channel
input distribution). As an example consider the case when
the channel input distribution does not depend on the channel
output: . One choice of is given by (8)

By Lemma 5.4, this is good with respect to
. Another choice puts zero mass on code

functions that depend on feedback (i.e., only use codewords)

if
else.

One can show that this is good with respect to
by checking for each ,

.
For memoryless channels, we know the optimal channel input

distribution is . Feedback in this case cannot in-
crease capacity but that does not preclude us from using feed-
back. For example, feedback is known to increase the error ex-
ponent and hence decrease latency.

B. Feedback Channel Coding Theorem

Now we prove the feedback channel coding Theorem 5.1. We
start with the converse part and then prove the direct part.

a) Converse Theorem: Choose a channel code
. Place a prior probability on each code func-

tion . By Lemma 3.1 and Corollary 3.1, this defines
consistent measures and .
The following is a generalization of the Verdú–Han converse
[34] for bounding the block error probability.

Lemma 5.5: Every channel code satisfies

Proof: Choose a . Let be the decoding
region for message . The only restriction we place on the
decoding regions is that they do not intersect:

. (This is always true when using a channel decoder:
.)
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Under this restriction on the decoder, Verdú and Han show
[34, Th. 4] that any channel code for the channel

without feedback [see (2)] satisfies for all

By Lemma 5.2, we know that

holds -a.s.

Note that for any channel decoder the decoding regions
do not overlap and hence we are able

to apply the Verdú and Han converse. Thus, the lemma holds
independently of the decoder that one uses.

Theorem 5.2: The channel capacity .
Proof: Assume there exists a sequence of

channel codes with and with rate
. By Lemma 5.5, we know

that for all

The first term on the right-hand side must go to zero as
because the error is going to zero. By the definition of , we
know . Since can be chosen
to be arbitrarily small, we see . Thus, .

b) Direct Theorem: We will prove the direct theorem via a
random coding argument. The following is a generalization of
Feinstein’s lemma [14], [34].

Lemma 5.6: Fix a time , a , and a channel
. Then, for all and any channel

input distribution , there exists a
channel code that satisfies

where
.

Proof: Let be any sequence of
code-function stochastic kernels good with respect to the
channel input distribution . Let

be the consistent joint measure deter-
mined by this and the channel.

Verdú and Han show in [34, Th. 2] that for the channel
without feedback and for every ,

there exists a channel code that satisfies

Lemma 5.2 shows

holds almost surely. Lemma 5.3 shows
almost surely. Hence,

.

Recall that the random coding argument underlying this re-
sult requires a distribution on channel codes given by randomly
drawing code functions uniformly from .

Theorem 5.3: The channel capacity .
Proof: We follow [34]. Fix an . We will show that

is an -achievable rate by demonstrating for every
and all sufficiently large that there exists a sequence of

codes with rate . If
in the previous lemma we choose , then we get

where the second inequality holds for all sufficiently large .
To see this, note that by the definition of and large enough,
the mass below has probability zero.

Proof of Theorem 5.1: By combining Theorems 5.2 and
5.3, we have .

We have shown that is the feedback channel capacity. It
should be clear that if we restrict ourselves to channels without
feedback then we recover the original coding theorem by Verdú
and Han [34].

We end this section with a discussion of the strong converse.

Definition 5.2: A channel with feedback capacity has a
strong converse if for all and every sequence of channel
codes, for which sat-
isfies .

Proposition 5.1: A channel with feedback capacity has
a strong converse if and only if

and thus
.
Proof: The first part follows from [34, Th. 7]. The latter

part follows from Theorem 5.1, Lemma 4.1, and the finiteness
of .

C. General Information Pattern

So far we have assumed that the encoder has access to all the
channel outputs . There are many situations, though, where
the information pattern [36] at the encoder may be restricted.
Let be a finite set and let . Here the measur-
able functions determine the information fed back
from the decoder to the encoder. Let . In the case
of -delayed feedback, we have .
If , then and we are in the situ-
ation discussed above. Quantized channel output feedback can
be handled by letting the be quantizers. The time ordering
is .

A channel code function with information pattern is a se-
quence of measurable maps such that
taking . Denote the set of all code functions with re-
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stricted information pattern by . The opera-
tional capacity with information pattern , denoted by ,
is defined similarly to Definition 3.2.

Just as in Section III–A, we can define a joint measure
as the interconnection of the code func-

tions and the channel . Lemma 3.1 follows
as before except that now condition two of consistency requires
both .

Define the channel input distribution with informa-
tion pattern to be a sequence of stochastic kernels

with the further condition that for each
the kernel .

Let be the set of all channel
input distributions with information pattern . Let

for finite

and

For the general information pattern, Lemmas 5.1–5.4 and The-
orems 5.1–5.6 continue to hold with obvious modifications.

Theorem 5.4: For channels with information pattern , we
have .

Intuitively, the reason this result holds is because the feed-
back is a causal, deterministic function of the channel outputs.
It would be interesting to examine the case with noisy feedback.
Unfortunately, this is a much more complicated problem. It is
related to the problem of channel coding with side information
at the encoder.

D. Error Exponents

We can generalize Gallager’s random coding error exponent
[15] to feedback channels. Specifically, Propositions 5.2 and 5.3
show that the error exponent can be computed directly in terms
of the “ ” channel. See also [31].

Definition 5.3: We are given a sequence of code-func-
tion stochastic kernels , a channel

, and a consistent joint measure
. The random coding error exponent is

where is defined as in
Lemma 3.1.

From Section III, we know that we can view the channel
with feedback as a channel without feedback from
to . Thus, we can directly apply [15, Th. 5.6.1] to see that

is the random coding error exponent
for channel codes drawn from .

We now show that we can simplify the form of the error ex-
ponent by writing it directly in terms of the channel input distri-
bution defined on . To that end, we define the directed
random coding error exponent.

Definition 5.4: Given a channel input distribution
and a channel ,

define the directed random coding error exponent to be

Proposition 5.2: We are given a sequence of code-func-
tion stochastic kernels , a channel

, and a consistent joint measure
. Let be a ver-

sion of the induced channel input distribution given in (5) of
Lemma 5.1. Then

Proof: Under the consistent measure and for
and all , we have

In line (a), is the indicator function, line (b) follows from
Lemma 3.1, and line (c) follows from Lemma 5.1.

Proposition 5.3: We are given a channel input distribution
and a channel .

Let the sequence of code-function stochastic kernels
be good with respect to the channel input

distribution . Then

Proof: We are given a channel input distribution
. In addition, is good

with respect to this channel input distribution.
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Fig. 2. Markov channel.

For this sequence of code-function stochastic kernels
, let be the associated con-

sistent measure and let be a version of
the induced channel input distribution. By Lemma 5.3, we know
for each and all that
for almost all . Hence

where (a) follows from Proposition 5.2.

In summary, Propositions 5.2 and 5.3 show the equivalence
of the random coding error exponent and the directed random
coding error exponent. The latter is defined over . In
Section VIII, we describe some cases where one can compute
the directed error exponent.

VI. MARKOV CHANNELS

In this section, we formulate the Markov channel feedback
capacity problem. As before, let be spaces with a finite
number of elements representing the channel input and channel
output, respectively. Furthermore, let be a state space with
a finite number of elements with the counting -algebra. Let

be measurable random elements taking values in
, respectively. See Fig. 2.

There is a natural time ordering on the random variables of
interest

(9)

First, at time , a message is produced and the initial state
is drawn. The order of events in each of the epochs is de-

scribed in (9). At the beginning of th epoch, the channel input
symbol is placed on the channel by the transmitter, then is
observed by the receiver, then the state of the system evolves to

, and then, finally the receiver feeds back information to the
transmitter. At the beginning of the epoch, the transmitter
uses the feedback information to produce the next channel input
symbol . Finally, at time , after observing , the de-
coder outputs the reconstructed message .

Definition 6.1: A Markov channel consists of an ini-
tial state distribution , the state transition stochastic
kernels , and the channel output
stochastic kernels . If the stochastic

kernel is independent of for each
, then we say the channel is a Markov

channel without ISI. Note that we are assuming that the ker-
nels and are stationary
(independent of time).

As before, a channel code function is a sequence of deter-
ministic measurable maps such that ,
which takes . We do not assume, for now, that the
state of the channel is observable to the encoder or decoder.
This will have the effect of restricting ourselves to channel input
distributions of the form as opposed to

. We assume that we have full output
feedback. This ensures that the information pattern at the re-
ceiver is nested in the information pattern at the transmitter.
As we will see, this nesting allows us to use the dynamic pro-
gramming methodology to compute capacity. Computing the
capacity of Markov channels under partial output feedback, as
described in Section V-C, turns out to be quite difficult and will
not be treated here. Finally, we assume that both the encoder and
the decoder know . In Section VIII-A, we show how to
introduce state feedback.

A. The Sufficient Statistic

Given a sequence of code-function distributions
, we can interconnect the Markov channel to

the source. Via a straightforward generalization of Definition
3.3 and Lemma 3.1, one can show there exists a unique consis-
tent measure:

.
Unlike in Lemma 3.1, determining the channel without
feedback from to takes a bit more work. To that end,
we introduce the sufficient statistics .

Let be an element in the space of probability
measures on . Define a stochastic kernel from to

(10)

The next lemma follows from Theorem A.3 in the Appendix.

Lemma 6.1: There exists a stochastic kernel
from to such that

where is the marginal of . Specifi-
cally, for each

(11)
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The statistic is often called the a priori distribution of
the state and the a posteriori distribution of the
state after observing . We recursively define the sufficient
statistics . Specifically, is
defined as follows:

(12)

(where is given in Definition 6.1), and for each and
all , let

(13)

Equations (12) and (13) are the so-called filtering equations.
Equation (13) implies there exists a stationary, measurable func-
tion such that for all

. Note the statistic depends on information from both the
transmitter and the receiver. It can be viewed as the combined
transmitter and receiver estimate of the state.

The next lemma shows that the are consistent.

Lemma 6.2: We are given a sequence of code-func-
tion stochastic kernels , a Markov channel

, and a consistent
joint measure . Then, for each and all

, we have

(14)

for almost all .
Proof: We will prove (14) by induction. For and

all , we have
. Now for and all , we have

where (a) follows from the definition of and the induction
hypothesis. Line (b) follows from Lemma 6.1 and (c) is another
application of the induction hypothesis.

Note that (14) states that the conditional probability
does not depend on almost surely.

In addition, the filtering (12) and (13) are defined indepen-
dently of the code-function distributions (or equivalently, the
channel input distributions). This is an example of Witsen-
hausen’s [37] observation that there is policy independence of
the filter. Finally, observe that (14) and the fact that is a
function of imply that
forms a Markov chain under any consistent measure .

B. Markov Channel Coding Theorem

We are now in a position to describe the “ ” channel
in terms of the underlying Markov channel. We then prove the
Markov channel coding theorem.

Lemma 6.3: We are given a sequence of code-func-
tion stochastic kernels a Markov channel

, and a consis-
tent joint measure . Then, for each and
all , we have

(15)

for almost all , where was defined in
(11).

Proof: For each , note that

where (a) follows from Lemma 6.2.

The previous lemma shows that
forms a Markov chain under .

Corollary 6.1: We are given a sequence of code-func-
tion stochastic kernels a Markov channel

, and a consis-
tent joint measure . Then, for each and
all , we have

(16)
for almost all .
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Proof: For each , note that

where the second line follows from Lemma 6.3.

The corollary shows that we can convert a Markov channel
into a channel of the general form considered in Sections III–V.
Hence, we can define the operational channel capacity for
the Markov channel with feedback in exactly the same way we
did in Definition 4.3. We can also use the same definitions of
capacity as before. Thus, we can directly apply Theorem 5.1
and its generalization Theorem 5.4 to prove the following.

Theorem 6.1: for Markov channels and
for Markov channels with information pattern .

We end this section by noting that the use of can sim-
plify the form of the directed information and the choice of the
channel input distribution.

Lemma 6.4: For Markov channels, we have
.

Proof: The first equality follows from Lemma 5.2. The
second equality follows from noting that

. For , we know
is a fixed, nonrandom, measure known to both the transmitter
and the receiver. Hence, . For

, we have
. Now

because is a function of
. Lemma 6.3 implies that

is a Markov chain hence .

We view the pair as an input to the channel. Intu-
itively, the encoder needs to send information about its state es-
timate so that the decoder can decode the message.

Lemma 6.5: Given a Markov channel
, and a channel

input distribution with resulting joint
measure , there exists another channel input
distribution of the form with resulting joint
measure such that for each 2

and hence .
Proof: From Lemmas 6.2 and 6.3 and (13), we know

(17)

2For any Borel measurable � � ����, let ��� � �� � � �� � � � �� � �
� ��� � � �� � � �� � � � �� � � �� � � � � �� .

By abusing notation, .
For each , define the stochastic kernel to be
a version of the conditional distribution (see
Theorem A.3 in the Appendix).

Proceed by induction. For , we know .
For any Borel measurable set,

Now for and any Borel measurable set

where (a) follows from the induction hypothesis and (b) follows
by the construction of .

Hence, we can without loss of generality restrict ourselves
to channel input distributions of the form .
Note that the dependence on appears only through

. If is not a function of ,
then the distribution of will depend only on the feedback

. We discuss when this happens in Section VIII.
In summary, we have shown that any Markov channel

can be con-
verted into another Markov channel with initial state

, deterministic state transitions
, and channel output stochastic

kernels . We call this the canonical Markov
channel associated with the original Markov channel. Thus, the
problem of determining the capacity of a Markov channel with
state space has been reduced to determining the capacity of
the canonical Markov channel. This latter Markov channel has
state space and state computable from the channel inputs
and outputs.
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Note that even if the original Markov channel does not
have ISI, it is typically the case that the canonical Markov
channel will have ISI. This is because
the choice of channel input can help the decoder identify the
channel. This property is called dual control in the stochastic
control literature [2].

VII. THE MDP FORMULATION

Our goal in this section is to formulate the following opti-
mization problem for Markov channels with feedback as an in-
finite horizon average cost problem.

Problem A

(18)

By Lemma 6.4, we have
. Be-

fore proceeding, the reader may notice that the optimiza-
tion in Problem A is different than the one given in (4):

. In the course of this section,
it will be shown that the optimization in (4) is equivalent to
Problem A. That one can without loss of generality restrict the
optimization to instead of shown to be a conse-
quence of Bellman’s principle of optimality. In addition, condi-
tions will be given such that under the optimal channel input dis-
tribution, we have .

To compute , we need to know the mea-
sure

(19)

By Lemma 6.5, we can restrict ourselves to channel input dis-
tributions of the form .

To formulate the optimization in Problem A as a stochastic
control problem, we need to specify the state space, the control
actions, and the running cost. On the first glance, it may ap-
pear that the encoder should choose control actions of the form

based on the information . Unfor-
tunately, one cannot write the running cost in terms of .
To see this, observe that the argument under the expectation in

can be written as

(20)
for almost all . This depends on
and not .

This suggests that the control actions should be stochastic
kernels of the form . In many cases, the space that
these kernels live in has a natural parameterization. For example,

Yang et al. [39] present a natural parametrization for a class
of finite state, Markov channels with state computable at the
transmitter. As an another example, for Gaussian channels, it is
known that the optimal input distribution is linear and can be
parameterized by its coefficients [8], [31], [40]. In this paper,
we will choose control actions of the form . This is
consistent with our view that the pair is an input to the
channel. Of course, there are restrictions on the marginal of .
The next section formalizes the stochastic control problem with
this choice of control action.

A. Partially Observed Markov Decision Problem

Here we first describe the components of the partially ob-
served Markov decision problem (POMDP) formulation. In the
next section, we show the equivalence of this POMDP formula-
tion to the optimization in Problem A.

Consider the control action in the control space
. The space is a Polish space (i.e., a

complete, separable metric space) equipped with the topology
of weak convergence.

The state at time is
and . The dynamics are given as

(21)

Note that the dynamics depends on but not on . The obser-
vation at time is given by and . Note
that is a deterministic function of .

As discussed, one of the main difficulties in formulating (18)
as a POMDP has to do with the form of the cost (20). The cost at
time is given as shown in (22) at the bottom of the page. Note
that the cost is just a function of .

The information pattern at the controller at time is
. The policy

at time is a stochastic kernel from
to . A policy is said to be a deterministic

policy if for each and all , the stochastic kernel
assigns mass one to only one point in .

In this case, we will abuse notation and write .
Technically, we should explicitly include and the other
channel parameters in the information pattern. But because
the channel parameters are fixed throughout and to simplify
notation, we will not explicitly mention the control policy’s
dependence on them.

The time order of events is the usual one for POMDPs:
. For a given policy , the re-

sulting joint measure is

if

else.
(22)
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where corresponds to the functional relationship be-
tween and . In terms of the original channel variables, this
can be written as

(23)

where we have used (21).
Note that this measure is not the same as the measure

used in (17) of Lemma 6.5. Compare the differences between the
and . In particular, notice that under the measure is

determined by the function given in (13), whereas under the
measure is determined by the choice of policy .

The next two sections discuss the relation between these two
different measures.

B. The Sufficient Statistic and the Control Constraints

As described above, is defined differently under the
measure given in (17) and under defined in (23). We need
to ensure that the play similar roles in both cases. To this
end, we will next define appropriate control constraints.

Equation (21) states
. The following lemma follows from Theorem A.3 in

the Appendix.

Lemma 7.1: There exists a stochastic kernel
from to such that

where is the marginal of
.

We now define the statistics , where
is the space of probability measures on probability

measures on . Specifically, is
defined as follows. For , let

(24)

and for and each and all Borel measurable
, let

(25)

Here corresponds to the indicator function. Note that for
depends only on . Also

is fixed. Thus, we will abuse notation and just write
for all .

Equation (25) implies there exists a deterministic, stationary,
measurable function such that for all

. Note that because of feedback the statistic
can be computed at both the transmitter and the receiver. It can
be viewed as the receiver’s estimate of the transmitter’s estimate
of the state of the channel.

We now define the control constraints. Let

(26)

Note that for each the set is compact. To
see this, note that is compact and the constraint defining
is linear.

For each and , the control constraint
is defined as

(27)

For each , the policy will enforce the control constraint.
Specifically, for all

(28)

The next lemma shows that the are consistent with the
conditional probabilities .

Lemma 7.2: We are given , the dynamics (21), and a
policy satisfying the control constraint (28) with resulting
measure . Then, for each , we have

(29)

for almost all .
Proof: Fix a Borel measurable set . For any ,

any Borel measurable sets and any
, we have

where the last equality follows because the control policy
satisfies the control constraint given in (28).

Equations (29) and (25) show that the conditional probability
does not depend on the policy and

almost surely. See comments after Lemma 6.2.
We can simplify the form of the cost, in the standard way, by

computing the expectation over the next state. For each , define

(30)

which follows from (22) and the fact that does not depend on
.
In summary, we have formulated an average cost, infinite

horizon, POMDP.
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Problem B

(31)

Here the dynamics are given by (21) and the costs are given
by (30). The supremization is over all policies that satisfy the
control constraint (28).

C. Equivalence of Problems A and B

We now show the equivalence of the optimization problems
posed in Problem A and Problem B. As discussed at the end
of Section VII-A, the measures and can be different.
By equivalence, we mean that for any choice of channel input
distribution with resulting joint measure

, we can find a control policy satis-
fying the control constraint (28) with resulting joint measure

such that for each

(32)

Vice versa, given any policy satisfying the control
constraint (28), we can find a channel input distribution

such that the above marginals are equal.
This equivalence will imply that the optimal costs for the two
problems are the same and the optimal channel input distribu-
tion for (18) is related to the optimal policy for (31).

Lemma 7.3: For every channel input distribu-
tion with resulting joint measure

, there exists a deterministic policy
satisfying the control constraint (28) with resulting joint
measure such that

for each .
Proof: For each , choose a deterministic policy that satis-

fies

for almost all . Proceed by induction. For , we
have

. For ,
we have for any Borel measurable and all

Line (a) follows by the induction hypothesis and our choice of
.

We show that the policy satisfies the constraint (28). For
, we have . For , we

have for any Borel measurable and all

where (a) follows from the first part and the choice of con-
trol, (b) follows from our choice of control, (c) follows from
the first part and Lemma 7.1, and (d) follows from (25). Fi-
nally, altering on a set of measure zero if necessary, we
can ensure that for each the deterministic policy will en-
force the control constraint. Specifically, for each , we have

.

Lemma 7.4: For every policy satisfying the
control constraint (28) with resulting joint measure

, there exists a channel input
distribution with resulting joint measure

such that
for each .

Proof: For each , pick a channel input distribution such
that

for almost all . We proceed by induction. For ,
we have

. For , we have for
any Borel measurable and all
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where (a) follows from the induction hypothesis, (b) follows
from Lemma 7.1, (c) follows from (25), (d) follows from
Lemma 7.2, and (e) follows from the choice of channel input
distribution.

The next lemma shows that the optimal policies for problem
B can be restricted to deterministic policies.

Lemma 7.5: For every policy satisfying the con-
trol constraint (28) with resulting joint measure , there
exists a deterministic policy satisfying the con-
trol constraint (28) with resulting joint measure such
that for each and

.
Proof: Fix . By Lemma 7.4, we know there is a

channel input distribution such that for each
, . By Lemma 7.3, we

know there is a deterministic policy such that for each ,
. Hence, for this ,

we have .
For each , any Borel measurable , and

Hence, for
almost all .

Now from (30) and for each

where (a) follows from the concavity of and the con-
ditional Jensen’s inequality, (b) follows from above, and (c) fol-
lows because and is a deterministic
policy.

Theorem 7.1: Problems A and B have equal optimal costs.
Proof: For any deterministic policy satisfying the

control constraint (28) with resulting joint measure and,
as given in Lemma 7.4, an associated channel input distribu-
tion with associated joint measure , the fol-
lowing holds for each :

where (a) and (b) follow because is a deterministic policy,
and hence, . Lines (c)
and (d) follow because .
The theorem then follows from this observation and Lemmas
7.3–7.5.

D. Fully Observed Markov Decision Problem

In this section, we make one final simplification. We will con-
vert the POMDP in Problem B into a fully observed MDP on a
suitably defined state space.

Note that the cost given in (30) at time only depends on
. The control constraints given in (26) at time only de-

pends on . The statistics only depend on
in the case and only depends on in the case

.
This suggests that could be a suit-

able fully observed state. The dynamics are given as
and for that

(33)
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Lemma 7.6: For every policy satisfying (28) with re-
sulting joint measure , we have for each

(34)

for almost all .
Proof: For each and for any Borel measurable sets

and any Borel measurable set , we
have

where the last line follows from (33).

Note that the dynamics given in (33), de-
pends only on . This along with the fact that the cost at time

only depends on and the control constraint at time only
depends on suggests that we can simplify the form of the con-
trol policy from to .

Theorem 7.2: Without loss of generality, the optimization
given in Problem B can be modeled as a fully observed MDP
with:

1) state space and dynamics given by (33);
2) compact control constraints given by (26);
3) running cost given by (30).

Proof: See Section 10.2 in [3], in particular, Proposition
10.5.

Lemmas 7.3–7.5 and Theorem 7.1 show that for any
deterministic policy with resulting joint mea-
sure , there is a corresponding channel input distribution

with resulting joint measure such that for
all , . By Theorem 7.2,
we know we can, without loss of generality, restrict ourselves
to deterministic policies of the form: . Under such a
policy, we have

for almost surely all . For a fixed deterministic
policy, we can view as a function of . Thus, the optimal
channel input distribution takes the form and

almost all (35)

Recall that in (18) of Problem A, we started with terms of the
form . We have now simplified it to terms of
the form . This is a significant simplification
because the size of is not growing in
time whereas the size of is growing in time. In review,

can be viewed as the encoder’s estimate of the state and

can be viewed as the decoder’s estimate of the encoder’s
estimate of the state. In addition, is known to the encoder.

E. ACOE and Information Stability

We present the ACOE for the fully observed MDP corre-
sponding to the equivalent optimizations in Problems A and B.
We then show that the process is information stable under the
optimal input distribution. Finally, we relate the equivalent op-
timizations in (18) and (31) to the optimization given in (4):

.
The following technical lemma is required to ensure the ex-

istence of a measurable selector in the ACOE given in (36).
The proof is straightforward but tedious and can be found in
the Appendix.

Lemma 7.7: For finite, we have:
1) the cost is bounded and continuous; specifically,

;
2) the control constraint function is a continuous set-

valued map between and ;
3) the dynamics are continuous.

We now present the average cost verification theorem.

Theorem 7.3: If there exists a , a bounded function
, and a policy achieving the supremum

for each in the following ACOE:

(36)

then:
1) is the optimal value of the optimization in Problem B;

the optimal policy is the stationary, deterministic policy
given by ;

2) under this , we have

and

Proof: See Lemma 7.7 and Theorems 6.2 and 6.3 of [1].

There exist many sufficient conditions for the existence of a
solution. See [1] and [18] for a representative sample. Most of
these conditions require the process be recurrent under the op-
timal policy. The following theorem describes one such suffi-
cient condition.

Theorem 7.4: If there exists an such that

(37)
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then the ACOE (36) has a bounded solution. Here de-
notes the total variation norm.

Proof: See Corollary 6.1 of [1].

Condition (37) insures that for any stationary policy there ex-
ists a stationary distribution. Specifically, the following holds.

Proposition 7.1: If (37) holds then for all stationary policies
of the form that satisfy the control constraint
(26) there exists a probably measure on such that for
any there exists a large enough such that

(38)

where is the -step transition stochastic
kernel under the stationary policy . Furthermore,

independent of the choice of .
Proof: See Lemma 3.3 of [18].

For a channel input distribution of the form , or
equivalent deterministic policy

, define for each the kernel

Lemma 7.8: We are given a channel input distribution
and a Markov channel with resulting joint mea-

sure . Then, for each , we have for -almost all

Proof: Fix Borel measurable sets and
for . Then

Thus, the lemma is proved.

To prove the next result we need a stronger mixing condition
than that given in Theorem 7.4. Specifically, assume that there
exists an such that for all channel input distributions of
the form and all

(39)

For a consistent measure , define for almost all

The following theorem will allow us to view the ACOE (36) as
an implicit single-letter characterization of the capacity of the
Markov channel.

Theorem 7.5: Assume there exists a , a bounded
function , and a policy achieving
the supremum for each in ACOE (36). Assume condition
(39) holds. Then, for and resulting joint measure , let

be the corresponding optimal channel input dis-
tribution (as in Lemma 7.4) and be the corresponding mea-
sure.

1)
2) The channel is directed information stable and has a

strong converse under the optimal channel input distribu-
tion .

3) is the capacity of the channel.
Proof: We first prove part 2) and 3) assuming part 1) is

true. Part 2) follows from part 1) and Proposition 5.1. To prove
part 3), note

where (a) follows from Lemma 4.1, (b) follows from theorems
7.1 and 7.2, and (c) follows from Bellman’s principle of opti-
mality. Note the supremizations in (b) and (c) are over policies
that satisfy the control constraint (28). Now by part 1), we see
that (a) holds with equality. Hence, part 3) follows.

We need only to prove part 1). Note that Theorem 7.3 2) im-
plies

almost all

almost all

where (a) follows from (35) and (b) follows because for each
. Hence, . De-

fine the nested family of sigma fields: .
Let
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The second term can be seen to be equal to
. Now

(40)

We first show that the second term converges to zero. Clearly,
is -measurable and . Hence, is

a martingale difference sequence. The martingale stability
theorem [30] states if

, then
To show bounded second moments, note that for any and
-almost all , we have

where line (a) follows because the variance is always less than
or equal to the second moment and line (b) follows because the
cross term is always less than or equal to zero. To see line (c),
note that the function achieves a maximum value of
over the domain . Hence

A similar argument holds for the other addend. Thus,

is summable, and hence, is summable.
Now we show that the first term in (40) converges to

. Under the optimal channel input distribution, we
have . This latter
term can be viewed as a bounded function of .

Under the mixing condition (39), we know there
exists a unique stationary distribution
for the Markov chain such that

. This follows
analogously to Proposition 7.1. By the mixing condition (39)
and the strong law of large numbers for Markov chains [19,
Th. 4.3.2], we know

. Finally, note
that since , we have by Proposi-
tion 7.1 and (35) that

.

VIII. CASES WITH SIMPLE SUFFICIENT STATISTICS

As we have already seen, the sufficient statistics
and can be quite complicated in general. This in
turn implies that solving the ACOE equation (36) can be quite
difficult. There are, though, many scenarios when the sufficient
statistics become much simpler and hence the ACOE becomes
simpler. In these cases, one can apply exact or approximate dy-
namic programming techniques to solve the ACOE. The ACOE
is an implicit single-letter characterization of the capacity. In
general, it will be difficult to get an explicit formula for the ca-
pacity.

A. Computable From the Channel Input and Output

In many scenarios, the state is computable from
. One example of such a channel would be

. Here one could choose the state to be
. We discuss other examples below.

In this section, we assume that for
some fixed state and for , we have

. Recall that is a function of
and satisfies the recursion . This
in turn implies that there exists a function such that

. To see this, recall (13). Because
are Diracs -almost surely, it must be the case that

is a function of .
Because , we can, in an abuse of notation,

identify them together: . Hence, again in an
abuse of notation, can be viewed as the conditional
probability of the state as opposed to the conditional
probability of . Specifically, as opposed to

. Then, we can restrict ourselves to control
policies of the form: taking

. Now the control constraints take the form
. Then,

the channel input distribution has the form .
The dynamics of given in (24) and (25) simplify to

, and for and all , we have

(41)

Hence, (33) simplifies to

(42)

where comes from (41). The cost in (30) simplifies as
well

(43)

In addition,
. Note that the second term shows that can also

convey information to the decoder. Finally, the ACOE (36) in



TATIKONDA AND MITTER: THE CAPACITY OF CHANNELS WITH FEEDBACK 343

Theorem 7.3 simplifies to an equation where is now a
function over

(44)

We now examine two cases where the computations simplify
further: is either computable from the channel input only or
the channel output only.

Case 1— Computable From the Channel Input Only: Here
we assume is computable from only and hence is
known to the transmitter. Specifically, we assume that is a
function of and satisfies the recursion .
This in turn implies there exists a function such that

. These channels are often called finite-state
machine Markov channels. Note that any general channel of
the form , for a finite , can be converted
into a Markov channel with state computable from
the channel input.

As before, in an abuse of notation, we can identify
and can be viewed as a conditional probability of the state

. Equations (41)–(44) continue to hold with obvious modifi-
cations. See [39] for more details. For Gaussian finite-state ma-
chine Markov channels, the estimate can be easily computed
by using a Kalman filter [40].

Case 2— Computable From the Channel Output Only:
Here we assume is computable from only . Specifically,
we assume that is known to the receiver, and via feedback, is
known to the transmitter. Then, is a function of and
satisfies the recursion . This in turn implies
there exists a function such that . Note
that any general channel of the form , for
a finite , can be converted into a Markov channel with state

computable from the channel output.
As before, in an abuse of notation, we can identify .

In addition, because is computable from the channel outputs,
we can, again in an abuse of notation, identify and hence
identify .

The control constraints simplify
. Because the state

is known to both the transmitter and the receiver, we see
that the control constraints become trivial. Hence, we can use
control actions of the form as opposed to .
We can then restrict ourselves to control policies of the form

taking . This implies that the
channel input distribution has the form .

The dynamics in (33) simplify quite a bit: and for
, we have and

(45)

The cost in (30) simplifies to

The last equality also follows because
. Finally, the ACOE (36) in

Theorem 7.3 simplifies to an equation where is now a
function over

(46)

Here the ACOE is defined over a finite-state space
and straightforward value and policy iteration tech-
niques can be used to compute the solution (when it ex-
ists) [2]. In this, the sufficient condition (37) reduces to

.
a) Markov Channels With State Observable to

the Receiver: An important scenario that falls under
the case just described is that of a Markov channel

, with state ob-
servable to the receiver. Specifically, at time , we assume that
along with , the state is observable to the receiver. The
standard technique for dealing with this setting is to define a new
channel output as follows: . The new Markov
channel has the same state transition kernel but the channel
output is .
We also assume that is observable to the transmitter. (This
can be achieved by assuming that is transmitted
during epoch .) Thus, the dynamics in (45) can be written as

, and for , we have and

(47)

Also,
. The second addend is zero if there is no ISI. If there is

no ISI, then (47) reduces to
. If is an ergodic transition kernel

with stationary distribution , then there exists a bounded solu-
tion to the ACOE [1]. In this case, the ACOE (46) simplifies
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Note that only enters the first term. Now inte-
grate each term with respect to . This leads to

. Thus,
we recover the well-known formula for the capacity of a
non-ISI ergodic Markov channel with state available to both
the transmitter and the receiver.

B. Computable From the Channel Output

Here we assume that is a function of only and sat-
isfies the recursion . Hence,

. We can then, in an abuse of notation, iden-
tify . Now can be viewed as a conditional probability
of the state . Recall the discussion of the canonical Markov
channel at the end of Section VI-B. Here we can view the as-
sociated canonical Markov channel as a Markov channel with
state computable from the channel output only (as discussed
in the previous section).

We can then restrict ourselves to control policies of the form
taking . To see this, note

that the control constraints become trivial, and hence, we can
use control actions of the form as opposed to .
This implies that the channel input distribution has the form

.
The dynamics in (33) simplifies to and for , we

have and

(48)

The cost in (30) simplifies as well

The last equality also follows because
.

Finally, the ACOE equation (36) in Theorem 7.3 simplifies to
an equation where is now a function over

(49)

As discussed above, the optimal channel input distribution
can be written in the form , or more

generally, . Furthermore, the code-function dis-
tribution, given by (8), simplifies to a product distribution.
Note that there is no dependence in .
Hence, for each and , the code function distribu-
tion is given by . Then,

. One can easily verify for each
that and hence is good with
respect to .

In summary, if the sufficient statistic is computable from
the channel output, then the optimal code-function distribution
can be taken to be a product measure. If depends on ,
then the optimal code function, in general, will not be a product
measure.

C. Error Exponents for Markov Channels

We can specialize the results on error exponents pre-
sented in Section V-D to Markov channels. For a given
Markov channel
with a stationary channel input distribution ,
the random coding directed error exponent takes the form

of

In general, this can be difficult to compute. There are cases
though where the formula simplifies. We describe one such case
now. Consider a Markov channel without ISI and with the state
observable to the receiver. As discussed in Section VIII-A2,
the optimal channel input distribution for maximizing the
directed information is stationary and takes the form .
Assume that is ergodic with stationary dis-
tribution . We know that the capacity in this case equals

. The
error exponent for channel code functions drawn randomly
from the channel input distribution can be written

where .

Define . Then
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In (a), is the empirical occupation
measure for the realization . In (b), corresponds to
the probability that is the empirical occupation measure under

. Specifically, for a Borel measurable , we
have .

Sanov’s theorem for the empirical measure of a Markov chain
shows that the associated large deviation rate function

is [11, Th. 3.1.6]

where . An application of Varadhan’s integral
lemma [11, Th. 4.3.1] shows

Hence, the error exponent takes the form

The right-hand side can be viewed as a single-letter characteri-
zation of the error exponent.

The error exponent simplifies even more if the state process
is i.i.d. Specifically, if .

Sanov’s theorem for the empirical measure of the i.i.d. process
shows that the associated large deviation rate function is

. Then, the error exponent takes the form

The supremizing can be shown to be a tilted version of .
Specifically, . This shows the role that

atypical state sequences can have on the error exponent.
Note that for the non-ISI, ergodic Markov chain, the optimal

channel input distribution has the form . In this case,
optimality refers to maximizing the directed information. This

, though, may not be the channel input distribution
that maximizes the error exponent given in Definition 5.4.
Intuitively, we expect state feedback to help increase capacity
while we expect channel output feedback to help increase the

error exponent. Maximizing the error exponent over all channel
input distributions is a challenging open problem.

We have computed the error exponent for fixed length channel
codes. It is known that one can get better error exponents if one
allows variable length channel codes [5].

IX. MAXIMUM-LIKELIHOOD DECODING

We now consider the problem of maximum-likelihood
decoding. For a given message set , fix a channel code

. Assume the messages are chosen uniformly.
Hence, each channel code function is chosen with proba-
bility . For a consistent joint measure

, our task is to simplify the computation of
.

First consider the general channels described in Section V.
Note

. Also, if
, then

where (a) follows by Lemma 5.1. Note that this implies that
is not a Markov chain under .

Due to the feedback, we effectively have a different channel
code without feedback for each . For each , define

for some

Thus, computing is equivalent to

(50)

where is the induced channel input distri-
bution for .

For the Markov channel case, we may replace
with in (50). If, in addition, the

channel code is chosen such that the induced channel input
distribution has the form , then

(51)

In the case where , the
optimization in (51) can be treated as a deterministic longest
path problem.
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X. CONCLUSION

We have presented a general framework for treating channels
with memory and feedback. We first proved a general coding
theorem based on Massey’s concept of directed information and
Dobrushin’s program of communication as interconnection. We
then specialized this result to the case of Markov channels. To
compute the capacity of these Markov channels, we converted
the directed information optimization problem into a partially
observed MDP. This required identifying appropriate sufficient
statistics at the encoder and the decoder. The ACOE verifica-
tion theorem was presented and sufficient conditions for the ex-
istence of a solution were provided. The complexity of many
feedback problems can now be understood by examining the
complexity of the associated ACOE. Error exponents were pre-
sented.

The framework developed herein allows one to apply ap-
proximate dynamic programming techniques, such as value and
policy iteration and reinforcement learning, for computing the
capacity. Such dynamic programming techniques are presented
in [39] for the case of finite-state machine Markov channels. Fi-
nally, the framework presented here allows one to compute the
capacity under restricted classes of policies. This is useful if one
is willing to sacrifice capacity for the benefit of a simpler policy.

APPENDIX

A. Review of Stochastic Kernels

The results here are standard and can be found in, for ex-
ample, [3]. Let be a Borel space and let and

be Polish spaces equipped with their Borel -algebras.

Definition A.1: Let be a family of probability mea-
sures on parameterized by . We say that is a stochastic
kernel from to if for every Borel set , the function

is measurable.

Lemma A.1: For , define by
for . Then

Theorem A.1: Let be a family of probability mea-
sures on given . Then, is a stochastic kernel if and
only if is measurable. That is if
and only if is a random variable from into .

Since is a random variable from into , it fol-
lows that the class of stochastic kernels is closed under weak
limits (weak topology on the space of probability measures.)

We now discuss interconnections of stochastic kernels. Let
be a stochastic kernel from to and

be a stochastic kernel from to . Then, the joint sto-
chastic kernel from to is, for all

, and , we have
. Via

the Ionescu–Tulcea theorem, this can be generalized to inter-
connections of countable number of stochastic kernels.

We now discuss the decompositions of measures.

Theorem A.2: Let be a probability measure on
. Let be the first

marginal. Then, there exists a stochastic kernel on
given such that for all and , then we have

This can be generalized to a parametric dependence.

Theorem A.3: Let be a stochastic kernel on
given . Let be the first marginal, which is a

stochastic kernel on given defined by

Then, there exists a stochastic kernel on given
such that , and , then we have

Let be a stochastic kernel on given and
suppose the stochastic kernel on given
satisfies , then we have

Then, for any measurable function and all
, we have

whenever the conditional expectation on the left-hand side ex-
ists.

Finally, recall that a stochastic kernel on given
is continuous if for all continuous bounded functions on , the
function is a continuous and bounded function
on .

Theorem A.4: If is a continuous stochastic kernel
on given and is a continuous bounded function on

, then is a continuous bounded function
on .

B. Lemma 4.1

We repeat the statement of Lemma 4.1 for convenience.

Lemma 4.1: For any sequence of joint measures
, we have

.

The proof of Lemma 4.1 is adapted from [17, Lemma A1]
and [34, Th. 8]. We need the following three lemmas. Combined
they state that the mass of at the tails is small. Recall
that .
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Lemma A.2: Let . For any sequence of measures
, we have

Proof: Let . Now

where the first inequality follows because entropy is maximized
by the uniform distribution and the second inequality follows
because . Now

. Thus

This upper bound goes to zero as .

Lemma A.4: For any sequence of joint measures
, we have

Proof: It follows from [25, p. 10].

Lemma A.4: Let . For any sequence of joint mea-
sures , we have

Proof: Let . Note that
Now

By Lemma A.2, this last upper bound goes to zero as
.

Proof of Lemma 4.1: The second inequality is obvious. To
prove the first inequality, note that , we have

The first addend goes to zero by Lemma A.3, the
second addend equals zero, and the probability in
the last addend goes to . Thus, for large enough,

. Since is arbitrary, we
see that

Now we treat the last inequality. For any , we have

The first addend goes to zero by Lemma A.4, the second addend
goes to zero by definition of , and the probability in the last
addend goes to . Thus, for large enough,

. Since is arbitrary, we see that
.

C. Lemma 7.7

We repeat the statement of Lemma 7.7 for convenience.

Lemma 7.7: For finite, we have:
1) The cost is bounded and continuous; specifically,

;
2) the control constraint function is a continuous set-

valued map between and ;
3) the dynamics is continuous.

Proof: To prove part 1), recall
. This corresponds to a

mutual information with input distribution and an
output in a finite alphabet . Hence, .
The cost is clearly continuous in .

To prove part 2), recall
. The set is compact for each
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. For any set , denote
. The set-valued map is continuous if it is both:

1) upper semicontinuous (usc): is closed in
for every closed set ;

2) lower semicontinuous (usc): is open in
for every open set .

The control constraint is clearly both usc and lsc and hence
is continuous.

To prove part 3), recall (33)

Since this stochastic kernel does not depend on , we only need
to show that it is continuous in . Specifically, let be any
continuous bounded function on . We need to show

(A1)

is a continuous function of .
By (25), we know for all Borel measurable

(A2)

By Lemma 7.1, we know that for any Borel measurable
and , we have

(A3)

when the denominator does not equal zero. Because is finite
and by repeated use of Theorem A.4, we see that (A3) is con-
tinuous in for all . This implies (A2) is continuous in
for all , thus, implying (A1) is continuous in .
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